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Aurantosides D-F (4-6), new polyene tetramic acids comprising an N-trisaccharide unit, have been
isolated from the marine sponge Siliquariaspongia japonica. Their structures were determined by spectral
and chemical methods. A reinvestigation of NMR data of the previously isolated aurantosides A and B
led to revision of the geometry of the terminal double bond. Aurantosides exhibit potent antifungal activity
against Aspergillus fumigatus and Candida albicans.

Aurantosides A (1) and B (2) are polyketide metabolites
isolated from the marine sponge Theonella swinhoei;2 they
are composed of a dichlorohexaene, a tetramic acid, and a
trisaccharide unit; these features resemble erythroskyrin3

and lipomycins.4 The aurantosides were originally obtained
as antifungal and cytotoxic constituents and later found
to inhibit binding of interleukin-6 to its receptors (unpub-
lished data). Quite recently, Schmitz and co-workers5

reported aurantoside C (3), which is lethal to brine shrimp,
from the Philippine sponge Homophymia conferta (Theon-
ellidae). In our continuing search for potential drugs from
Japanese benthic invertebrates, the extract of the marine
sponge Siliquariaspongia japonica 6 collected off Hachijo-
jima Island showed antifungal activity against Aspergillus
fumigatus and Candida albicans. Bioassay-guided isolation
afforded three new aurantosides D (4), E (5), and F (6).
This paper describes the isolation, structure elucidation,
and biological activities of these compounds as well as
revision of the stereochemistry of aurantosides A (1) and
B (2).

Results and Discussion

The EtOH extract of the sponge (400 g wet wt) was
separated by a series of solvent partitionings. The active
n-BuOH and 90%MeOH layers were fractionated by flash
chromatography on ODS followed by reversed-phase HPLC
to afford aurantoside D (4, 1.4 mg, 3.5 × 10-4 % yield, based
on wet wt), aurantoside E (5, 57.9 mg, 1.4 × 10-2 %), and
aurantoside F (6, 2.9 mg, 7.3 × 10-4 %).

The major antifungal metabolite aurantoside E (5) had
a molecular formula of C38H48Cl2N2O15 as established by
HRFABMS and 13C NMR data. The 1H NMR spectrum of
aurantoside E7 was similar to that of aurantoside A (1)2

except for the presence of two additional olefinic methine
protons (Table 1). Interpretation of the COSY spectrum
disclosed that aurantoside E had the polyene chain from
H-8 to H-16, the tetramic acid core, and the trisaccharide
unit found in aurantoside A. Also indicated were three
contiguous olefinic protons (H-18-H-20); of these H-18 was
long-range coupled to H-16, while H-20 was coupled to an
olefinic methyl (C-22) at 2.22 ppm. HMBC data connected
C-16 and C-18 through a carbon at 134.7 ppm and C-20

and C-22 via a carbon at 135.5 ppm. The 13C chemical shifts
and the molecular formula of aurantoside E indicated that
both C-17 and C-21 were chlorinated. Therefore, auranto-
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side E has a vinyl unit inserted between C-17 and C-18 of
aurantoside A (1). The geometry of the olefins was assigned
on the basis of 1H-1H coupling constants and NOESY data.
Analysis of HMBC data disclosed that the eastern part of
aurantoside E (5) was identical with that of aurantoside A
(1). Chiral GC analysis of the acid hydrolysate showed that
both xylose and arabinose were in the D-form, whereas the
acid hydrolysate of the Lemieux oxidation product of 5
afforded L-aspartic acid, thereby determining 4S-stereo-
chemistry. Because aurantosides A and E exhibited almost
superimposable NMR signals for the trisaccharide portions,
the remaining 5-deoxy-2-O-methylarabinofuranose was
most likely to have D-stereochemistry.

After completion of the structural study of aurantoside
E (5), we noticed a significant discrepancy in the chemical
shifts of the terminal olefinic methyls in aurantoside E and
those of aurantoside A;2 Me-22 resonated at δH 2.22 and
δC 26.5 in aurantoside E, while Me-20 in aurantoside A
appeared at δH 2.38 and δC 23.6. The stereochemistry for
the ∆20 olefin in aurantoside E was assigned Z on the basis
of a NOESY cross-peak between H-20 and Me-22. However,
the geometry of the ∆18-olefin in aurantoside A had not
been rigorously determined. A NOESY spectrum of auran-
toside A measured under the same condition, revealed a
cross-peak between H-16 and H-18, but not between H-18

and Me-20. Therefore, the ∆18 double bond of aurantoside
A has E geometry.8

The 1H and 13C NMR spectra of aurantoside D (4), which
is more polar than 5, were almost superimposable on those
of aurantoside E (5), except for the absence of the C-2′′′-
methoxy group, which is replaceable by a hydroxyl group
by interpretation of 2D NMR spectra. This was confirmed
by FABMS data. Therefore, 4 is the 2′′′-des-O-methyl
derivative of aurantoside E.

The molecular formula of aurantoside F (6) was larger
by a C2H2 unit than that of aurantoside E. Interpretation
of the COSY spectrum readily implied the presence of an
additional vinyl group between C-17 and C-18 of auranto-
side E. Detailed analysis of 2D NMR spectra led to the
structure of aurantoside F (6) as shown.

The aurantosides are cytotoxic against P-388 murine
leukemia cells and antifungal against A. fumigatus and C.
albicans as shown in Table 2. Interestingly, aurantoside
E was significantly more potent against both fungi than
aurantosides A and B. It is also noted that aurantoside F
was 10 times more cytotoxic against P-388 murine leuke-
mia cells than aurantosides D or E.

Experimental Section
General Experimental Procedures. NMR spectra were

recorded either on a JEOL R-500 or R-600 spectrometer.

Table 1. NMR Data for Aurantosides D (4), E (5), and F (6) in CD3OD

4 5 6

position 1H mult (J, Hz) 13C mult 1H mult (J, Hz) 1H mult (J, Hz)

1 176.2 s
2 102.0 s
3 194.9 s
4 4.15 br 65.6 d 4.30 br s 4.26 br

5R 2.50 m 38.1 t 2.66 br 2.61 m
â 2.77 dd (3.4,17.0) 2.78 dd (3.6,16.2) 2.79 dd (4.0,16.2)
6 174.3 s
7 174.8 s
8 7.47 br 121.9 d 7.24 d (14.4) 7.30 br
9 7.34 br 146.4 d 7.59 dd (11.2,14.4) 7.54 br

10 6.60 m 133.3 d 6.62 m 6.60 m
11 6.75 m 145.2 d 6.89 m 6.85 br
12 6.55 m 135.6 d 6.57 m 6.55 m
13 6.75 m 140.3 6.70 dd (11.9,14.6) 6.70 m
14 6.55 m 137.4 d 6.59 m 6.61 m
15 6.78 m 132.8 d 6.87 dd (11.9,14.2) 6.85 m
16 6.55 m 131.1 d 6.56 m 6.55 m
17 134.7 s
18 6.46 d (15.0) 132.1 d 6.48 d (14.6) 6.49 d (14.0)
19 6.87 dd (10.4,15.0) 128.9 d 6.93 dd (10.6,14.6) 6.76 dd (14.0,11.1)
20 6.29 d (10.4) 126.1 d 6.33 d (10.6) 6.43 dd (11.1,15.0)
21 135.5 s 6.63 dd (10.4,15.0)
22 2.20 br s 26.7 q 2.22 br s 6.26 d (10.4)
23
24 2.21 br s
1′ 86.2 d 4.50 br s
2′ 81.2 d 3.63 m
3′ 3.44 m 79.2 d 3.48 t (8.9) 3.44 t (9.2)
4′ 3.58 m 70.4 d 3.62 m 3.60 m

5′R 3.15 dd (9.5,11.0) 69.2 t 3.20 t (11.3) 3.19 t (11.0)
â 3.82 m 3.86 dd (6.0,11.3) 3.84 m

1′′ 5.08 br s 103.8 d 5.02 br s 5.04 br s
2′′ 3.73 m 71.6 d 3.79 dd (2.3,10.6) 3.77 m
3′′ 3.73 m 70.7 d 3.75 m 3.75 m
4′′ 3.89 m 76.1 d 3.90 dd (3.0,4.2) 3.89 m

5′′R 3.61 m 61.5 t 3.58 dd (3.0,12.4) 3.57 m
â 3.76 m 3.70 br d (12.4) 3.71 m

1′′′ 4.91 d (3.4) 99.0 d 5.08 d (4.2) 5.08 d (4.6)
2′′′ 3.85 m 87.3 d 3.68 dd (4.2,8.1) 3.65 dd (4.6,8.2)
3′′′ 3.73 m 79.7 d 3.89 m 3.88 m
4′′′ 3.71 m 79.5 d 3.74 m 3.74 m
5′′′ 1.28 d (5.8) 20.8 q 1.32 d (6.2) 1.30 d (6.4)

OMe 58.3 q 3.34 s 3.34 s
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Chemical shifts were referenced to the solvent (δC 49.0; δH 3.30
in CD3OD). Standard pulse sequences were employed for the
2D NMR experiments. NOESY spectra were measured with a
mixing time of 500 ms. FABMS were obtained on a JEOL
SX102 spectrometer. Optical rotations were measured on a
JASCO DIP-371 digital polarimeter.

Biological Material. The vermilion sponge Siliquari-
aspongia japonica (family Theonellidae, order Lithistida) was
collected at a depth of 15 m off Hachijo-jima Island, 300 km
south of Tokyo. The main skeleton was an interlocked mass
of small tetracrepid desmas of 150-µm diameter, which were
caltroplike in having the cladi more or less equal in length
and shape. These desmas have characteristic conical spines.
At the surface there was a thin discontinuous layer of
discotriaenes with diameters of 100-140 µm, of rounded or
slightly irregular outline and irregular margins, and they had
very short rhabds. Microrhabds formed a thick cover at the
surface and were dispersed in the interior. They were of three
sorts: small thin centrotylote, ca. 18 × 0.5 µm; long, profusely
spined oxeotes, ca. 35 × 4 µm; and thick, almost smooth
spindles, ca. 25 × 6 µm. A voucher specimen (ZMAPOR.13013)
was deposited at the Zoological Museum of the University of
Amsterdam, The Netherlands.

Extraction and Isolation. The frozen sponge (400 g wet
wt) was extracted with EtOH (3 × 1 L), and the concentrated
extract was partitioned between H2O (500 mL) and Et2O (3 ×
500 mL). The Et2O phase was partitioned between n-hexane
and MeOH-H2O (9:1), while the H2O layer was partitioned
between H2O and n-BuOH. The active n-BuOH and 90%MeOH-
soluble portions were combined (2.5 g) and flash chromato-
graphed on ODS with aqueous MeOH. The 90% MeOH eluate
was fractionated by MPLC on ODS with CH3CN-H2O (55:
45) containing 0.05% TFA to yield nine fractions. The second
fraction of the ODS MPLC was separated by HPLC on ODS
with CH3CN-H2O-TFA (55:45:0.05) followed by ODS HPLC
with MeOH-H2O-TFA (85:15:0.05) to yield aurantoside D (4,
1.4 mg, 3.5 × 10-6 %). The third fraction from the ODS MPLC
was purified in the same way to afford aurantoside E (5, 57.9
mg, 1.4 × 10-4 %). The fifth fraction was repeatedly purified
by ODS HPLC with (a) CH3CN-H2O-TFA (55:45:0.05), (b)
MeOH-H2O-TFA (90:10:0.05), and (c) CH3CN-H2O-TFA
(60:40:0.05) to furnish aurantoside F (6, 2.9 mg, 7.3 × 10-6

%).
Aurantoside D (4): red amorphous solid, [R]24

D -536° (c
0.001, MeOH); UV(MeOH) λmax (log ε) 244 (4.30), 433 (4.83)
nm; HRFABMS m/z 827.2150 (calcd for C37H45

35Cl2N2O15,
827.2197); 1H NMR data, see Table 1.

Aurantoside E (5): red amorphous solid, [R]24
D -1038° (c

0.001, MeOH); UV(MeOH) λmax (log ε) 250 (4.12), 423 (4.99)
nm; UV (0.01 N HCl in MeOH) λmax (log ε) 342 (4.30), 472 (4.97)
nm; UV (0.01 N NaOH in MeOH) λmax (log ε) 250 (4.34), 423
(5.04), 448 (5.01) nm; HRFABMS m/z 841.2279 (calcd for
C38H47

35Cl2N2O15, 841.2353); 1H and 13C NMR data, see Table
1.

Aurantoside F (6): red amorphous solid, [R]24
D -1012° (c

0.001, MeOH); UV(MeOH) λmax (log ε) 440 (4.79), 465 (4.85)
nm; HRFABMS m/z 868.2622 (calcd for C40H50

35Cl2N2O15,
868.2588); 1H NMR data, see Table 1.

Determination of the Absolute Stereochemistry of
Xylose and Arabinose Residues in Aurantoside E (5).

Aurantoside E (5) (1.5 mg) in 10% HCl-MeOH (1.0 mL) was
heated at 100 °C for 2 h. After evaporation of the solvent, the
residue was chromatographed on ODS with H2O and MeOH.
The H2O fraction was evaporated and treated with trifluoro-
acetic anhydride (0.2 mL) in CH2Cl2 (0.2 mL) at 100 °C for 5
min in a screw-capped vial. The reaction mixture was dried
in a stream of N2 and dissolved in CH2Cl2 (0.1 mL); a 2-µL
portion of the solution was subjected to GC analysis on a
Chirasil-L-Val capillary column (25 m × 0.25 mm, i.d.);
detection, FID; initial temperature 50 °C for 6 min; final
temperature 160 °C for 1 min; temperature was raised at 4
°C min-1. Retention times: L-Xyl (16.785, 20.283 min), D-Xyl
(16.427, 19.963 min), L-Ara (17.365, 20.325 min), D-Ara
(17.385, 20.740 min): products from aurantoside E, 15.670,
16.927, 19.403, and 20.478 min. Because the retention times
fluctuated, identity of the peaks was examined by co-injection
with the standards.

Determination of the Absolute Stereochemistry at C-4
of Aurantoside E (5). To a solution of aurantoside E (5) (1.0
mg) in H2O (0.1 mL) was added KMnO4 (0.25 mL of 10 mg/
mL solution in H2O) and NaIO4 (0.3 mL of 10 mg/mL solution
in H2O) and the mixture stirred at room temperature for 10
min. The reaction mixture was centrifuged for 10 min. The
supernatant was evaporated to afford a residue that was
dissolved in 6N HCl (1.0 mL); the mixture was heated at 105
°C for 2 h. After evaporation of the solvent, the residue was
chromatographed on ODS with H2O and MeOH. The H2O
fraction was dissolved in 10% HCl in MeOH (0.5 mL) and
heated at 100 °C for 2 h. After removal of the solvent in a
stream of N2, CH2Cl2 (0.2 mL) and trifluoroacetic anhydride
(0.2 mL) were added to the residue, and the mixture heated
at 100 °C for 5 min in a screw-capped vial. The solvents were
removed in a stream of N2, and the residue was dissolved in
CH2Cl2 (0.1 mL); a 2-µL portion was subjected to GC analysis
on a Chirasil-L-Val capillary column (25 m × 0.25 mm, i.d.);
detection, FID; initial temperature 80 °C for 5 min; final
temperature 200 °C for 10 min; temperature was raised at 4
°C min-1. Retention times: L-Asp (12.600 min), D-Asp (12.940
min); product from aurantoside E (12.785 min). Because the
retention times fluctuated, identity of the peaks was confirmed
by co-injection with the standards.
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Table 2. Biological Activities of Aurantosides

antifungal activityb

compound cytotoxicitya C. albicans A. fumigatus

aurantoside A (1) >5.0 11.3 (1.25) 18.0 (0.16)
aurantoside B (2) >5.0 11.8 (0.63) 17.2 (0.16)
aurantoside D (4) 0.2 9.5 11.0
aurantoside E (5) 0.2 9.7 (0.16) 13.6 (0.04)
aurantoside F (6) 0.05 inactive inactive

a IC50 µg/mL against P-388 murine leukemia cells. b Inhibitory
zone (mm) at 2 µg/disk (8 mm φ) and MIC value (µg/mL) in
parenthesis.
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